

JBE-19MBA-102 Seat No. _____

M. B. A. (Sem. I) (CBCS) Examination

December - 2019

Quantitative Techniques in Management 19MBA-102

Time: 3 Hours] [Total Marks: 70

Instruction: All questions carry equal marks.

1 What is Operations Research (QT)? Explain with the help of suitable examples how it will be helpful in taking business decisions.

OR

- 1. What is meant by a Transportation problem. Explain the various methods to solve it with help of suitable examples.
- 2 (A) What is the Consumer Panel Survey method of making forecast. Discuss the advantages and limitations of it
 - (B) What are the major comparative characteristics of the PERT model and CPM model? What are their limitations, if any? Discuss.

OR

2 Solve the following assignment problem and obtain minimum total time for doing all jobs

Clerk	Job						
Clerk	1	2	3	4	5		
A	6	2	5	2	6		
В	2	5	8	7	7		
C	7	8	6	9	8		
D	6	2	3	4	5		
E	9	3	8	9	7		
F	4	7	4	6	8		

What is a game theory? State the assumptions underlying it. Discuss its importance to business decisions.

OR

1

3 From the following information draw a network diagram. Obtain a critical path and also calculate Total Float, Free Float and Independent Float.

Activity	A	В	С	D	Е	F	G	Н
Predecessor Activity	ı	ı	ı	A	A	A	B,D	С,Е
Duration (Days)	3	6	2	4	2	7	4	3

- 4 (A) What is a time series forecasting model? Explain the principle underlying the trend line.
 - (B) Discuss the Delphi method of making forecast.

OR

4 Determine the optimal strategies and the value of the game from the following.

		В		
A				
	B_1	B_2	B_3	B_4
A_1	-5	16	13	15
A_2	20	-5	60	-70
A_3	-5	9	12	10
A_4	-20	-2	-50	-80

5 Given the following transportation problem:

Warehouse				
	1	2	3	Supply
A	10	12	7	180
В	14	11	6	100
C	9	5	13	160
D	11	7	9	120
Demand	240	200	220	

It is known that nothing can be sent from warehouse A to market 1 and from warehouse C to market 3. From the information given above obtain an initial solution using VAM